Rational combinations of Betti diagrams of complete intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-simplicial Decompositions of Betti Diagrams of Complete Intersections

We investigate decompositions of Betti diagrams over a polynomial ring within the framework of Boij–Söderberg theory. That is, given a Betti diagram, we decompose it into pure diagrams. Relaxing the requirement that the degree sequences in such pure diagrams be totally ordered, we are able to define a multiplication law for Betti diagrams that respects the decomposition and allows us to write a...

متن کامل

Powers of Complete Intersections: Graded Betti Numbers and Applications

Abstract. Let I = (F1, . . . , Fr) be a homogeneous ideal of the ring R = k[x0, . . . , xn] generated by a regular sequence of type (d1, . . . , dr). We give an elementary proof for an explicit description of the graded Betti numbers of Is for any s ≥ 1. These numbers depend only upon the type and s. We then use this description to: (1) write HR/Is , the Hilbert function of R/Is, in terms of HR...

متن کامل

Decompositions of Betti Diagrams

In this dissertation, we are concerned with decompositions of Betti diagrams over standard graded rings and the information about that ring and its modules that can be recovered from these decompositions. In Chapter 2, we study the structure of modules over short Gorenstein graded rings and determine a necessary condition for a matrix of nonnegative integers to be the Betti diagram of such a mo...

متن کامل

The Semigroup of Betti Diagrams

The recent proof of the Boij-Söderberg conjectures reveals new structure about Betti diagrams of modules, giving a complete description of the cone of Betti diagrams. We begin to expand on this new structure by investigating the semigroup of Betti diagrams. We prove that this semigroup is finitely generated, and we answer several other fundamental questions about this semigroup.

متن کامل

Graded Betti Numbers of Cohen-macaulay Modules and the Multiplicity Conjecture

We give conjectures on the possible graded Betti numbers of Cohen-Macaulay modules up to multiplication by positive rational numbers. The idea is that the Betti diagrams should be non-negative linear combinations of pure diagrams. The conjectures are verified in the cases where the structure of resolutions are known, i.e., for modules of codimension two, for Gorenstein algebras of codimension t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2018

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s0219498818500792